skip to main content


Search for: All records

Creators/Authors contains: "O’Bryan, Christopher S."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Capillary forces acting at the interfaces of soft materials lead to deformations over the scale of the elastocapillary length. When surface stresses exceed a material's yield stress, a plastocapillary effect is expected to arise, resulting in yielding and plastic deformation. Here, we explore the interfacial instabilities of 3D-printed fluid and elastic beams embedded within viscoelastic fluids and elastic solid support materials. Interfacial instabilities are driven by the immiscibility between the paired phases or their solvents. We find that the stability of an embedded structure is predicted from the balance between the yield stress of the elastic solid, τ y , the apparent interfacial tension between the materials, γ ′, and the radius of the beam, r , such that τ y > γ ′/ r . When the capillary forces are sufficiently large, we observe yielding and failure of the 3D printed beams. Furthermore, we observe new coiling and buckling instabilities emerging when elastic beams are embedded within viscous fluid support materials. The coiling behavior appear analogous to elastic rope coiling whereas the buckling instability follows the scaling behavior predicted from Euler–Bernoulli beam theory. 
    more » « less
  2. Abstract

    Glycosylation alters protein form and function by establishing intermolecular forces that mediate specific interactions while preventing non-specific aggregation. Self-assembled peptide nanofibers modified with carbohydrates are increasingly used as biomaterials to mimic glycosylated protein function, yet the influence of carbohydrate conjugates on nanofiber structure remains poorly defined. Here we show that a dense carbohydrate surface layer can facilitate hierarchical organization of peptide nanofibers into anisotropic networks. Glycosylated peptide nanofibers remain dispersed in dilute conditions, whereas non-glycosylated nanofibers tend to aggregate. In crowded conditions, some glycosylated nanofibers laterally associate and align. This behavior depends on carbohydrate chemistry, particularly hydroxyls, suggesting involvement of short-range attractive forces. Macroscopic gels fabricated from densely glycosylated peptide nanofibers are resistant to non-specific interactions with proteins, mammalian cells, and bacteria, yet selectively bind lectins, analogous to natural low-fouling mucosal barriers. Collectively, these observations demonstrate that glycosylation can inform structure in addition to endowing function to peptide-based supramolecular biomaterials.

     
    more » « less
  3. Micro-scale hydrogel particles, known as microgels, are used in industry to control the rheology of numerous different products, and are also used in experimental research to study the origins of jamming and glassy behavior in soft-sphere model systems. At the macro-scale, the rheological behaviour of densely packed microgels has been thoroughly characterized; at the particle-scale, careful investigations of jamming, yielding, and glassy-dynamics have been performed through experiment, theory, and simulation. However, at low packing fractions near jamming, the connection between microgel yielding phenomena and the physics of their constituent polymer chains has not been made. Here we investigate whether basic polymer physics scaling laws predict macroscopic yielding behaviours in packed microgels. We measure the yield stress and cross-over shear-rate in several different anionic microgel systems prepared at packing fractions just above the jamming transition, and show that our data can be predicted from classic polyelectrolyte physics scaling laws. We find that diffusive relaxations of microgel deformation during particle re-arrangements can predict the shear-rate at which microgels yield, and the elastic stress associated with these particle deformations predict the yield stress. 
    more » « less
  4. Abstract

    With improving biofabrication technology, 3D bioprinted constructs increasingly resemble real tissues. However, the fundamental principles describing how cell-generated forces within these constructs drive deformations, mechanical instabilities, and structural failures have not been established, even for basic biofabricated building blocks. Here we investigate mechanical behaviours of 3D printed microbeams made from living cells and extracellular matrix, bioprinting these simple structural elements into a 3D culture medium made from packed microgels, creating a mechanically controlled environment that allows the beams to evolve under cell-generated forces. By varying the properties of the beams and the surrounding microgel medium, we explore the mechanical behaviours exhibited by these structures. We observe buckling, axial contraction, failure, and total static stability, and we develop mechanical models of cell-ECM microbeam mechanics. We envision these models and their generalizations to other fundamental 3D shapes to facilitate the predictable design of biofabricated structures using simple building blocks in the future.

     
    more » « less
  5. Three-dimensional (3D) printing has expanded beyond the mere patterned deposition of melted solids, moving into areas requiring spatially structured soft matter—typically materials composed of polymers, colloids, surfactants, or living cells. The tunable and dynamically variable rheological properties of soft matter enable the high-resolution manufacture of soft structures. These rheological properties are leveraged in 3D printing techniques that employ sacrificial inks and sacrificial support materials, which go through reversible solid–fluid transitions under modest forces or other small perturbations. Thus, a sacrificial material can be used to shape a second material into a complex 3D structure, and then discarded. Here, we review the sacrificial materials and related methods used to print soft structures. We analyze data from the literature to establish manufacturing principles of soft matter printing, and we explore printing performance within the context of instabilities controlled by the rheology of soft matter materials. 
    more » « less